On Unaveraged Convergence of Positive Operators in Lebesgue Space
نویسندگان
چکیده
منابع مشابه
On convergence of certain nonlinear Durrmeyer operators at Lebesgue points
The aim of this paper is to study the behaviour of certain sequence of nonlinear Durrmeyer operators $ND_{n}f$ of the form $$(ND_{n}f)(x)=intlimits_{0}^{1}K_{n}left( x,t,fleft( tright) right) dt,,,0leq xleq 1,,,,,,nin mathbb{N}, $$ acting on bounded functions on an interval $left[ 0,1right] ,$ where $% K_{n}left( x,t,uright) $ satisfies some suitable assumptions. Here we estimate the rate...
متن کاملon convergence of certain nonlinear durrmeyer operators at lebesgue points
the aim of this paper is to study the behaviour of certain sequence of nonlinear durrmeyer operators $nd_{n}f$ of the form $$(nd_{n}f)(x)=intlimits_{0}^{1}k_{n}left( x,t,fleft( tright) right) dt,,,0leq xleq 1,,,,,,nin mathbb{n}, $$ acting on bounded functions on an interval $left[ 0,1right] ,$ where $% k_{n}left( x,t,uright) $ satisfies some suitable assumptions. here we estimate the rate...
متن کاملMaps on positive operators preserving Lebesgue decompositions
Let H be a complex Hilbert space. Denote by B(H)+ the set of all positive bounded linear operators on H. A bijective map φ : B(H)+ → B(H)+ is said to preserve Lebesgue decompositions in both directions if for any quadruple A,B,C,D of positive operators, B = C +D is an A-Lebesgue decomposition of B if and only if φ(B) = φ(C)+φ(D) is a φ(A)-Lebesgue decomposition of φ(B). It is proved that every ...
متن کاملPositive Toeplitz Operators on the Bergman Space
In this paper we find conditions on the existence of bounded linear operators A on the Bergman space La(D) such that ATφA ≥ Sψ and ATφA ≥ Tφ where Tφ is a positive Toeplitz operator on L 2 a(D) and Sψ is a self-adjoint little Hankel operator on La(D) with symbols φ, ψ ∈ L∞(D) respectively. Also we show that if Tφ is a non-negative Toeplitz operator then there exists a rank one operator R1 on L ...
متن کاملQuasi-uniformly Positive Operators in Krein Space
BRANKO CURGUS and BRANKO NAJMAN Deenitizable operators in Krein spaces have spectral properties similar to those of selfadjoint operators in Hilbert spaces. A suucient condition for deenitizability of a selfadjoint operator A with a nonempty resolvent set (A) in a Krein space (H; j ]) is the niteness of the number of negative squares of the form Axjy] (see 10, p. 11]). In this note we consider ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1973
ISSN: 0002-9947
DOI: 10.2307/1996510